

Activités mentales rapides

Je fais le point

Question 1

On lance trois fois de suite une pièce de monnaie bien équilibrée. On note *X* la variable aléatoire égale au nombre de fois que l'on a obtenu **PILE.**

La loi de probabilité de X est donnée par le tableau suivant.

a.	Valeur	0	1	2	3
	Probabilité	0,25	0,25	0,25	0,25
b.	Valeur	0	1	2	3
	Probabilité	0,125	0,375	0,375	0,125
	Valeur	0	1	2	3
C.	Probabilité	0,125	0,25	0,375	0,125

Question 2

On utilise la même loi de probabilité que dans la diapositive précédente.

La probabilité d'obtenir au moins une fois PILE est égale à :

a. 1

b. 0,5

c. $\frac{7}{8}$

Question 3

La loi de probabilité de la variable aléatoire *Y* est donnée par le tableau suivant.

Valeur	-7	1	5
Probabilité	0,5	0,25	0,25

L'espérance de Y est égale à :

b.
$$\frac{-7+1+5}{3}$$

Question 4

La loi de probabilité de la variable aléatoire Z dont l'espérance est nulle est donnée par le tableau suivant.

Valeur	6	-3
Probabilité	$\frac{1}{3}$	$\frac{2}{3}$

a.
$$v(Z) = 18$$

- b. L'écart type de Z est égal à 18
- c. L'écart type de Z est égal à 3

Question 5

La loi de probabilité de la variable aléatoire G qui calcule les gains possibles à un jeu est donnée par le tableau suivant.

Valeur	-9	2	X
Probabilité	$\frac{1}{3}$	$\frac{1}{2}$	$\frac{1}{6}$

Le jeu est équitable si :

a.
$$x = 7$$

a.
$$x = 7$$
 b. $x = 15$ **c.** $x = 12$

c.
$$x = 12$$

Question 6

La variable aléatoire G calcule les gains possibles à un jeu.

On sait que son espérance vaut 5 et sa variance $\frac{1}{4}$.

On décide de multiplier tous les gains par 3.

On note X la nouvelle variable aléatoire ainsi définie.

On a alors:

a.
$$V(X) = \frac{3}{4}$$
 b. $E(X) = 45$ **c.** $\sigma(X) = 1.5$

b.
$$E(X) = 45$$

c.
$$\sigma(X) = 1,5$$