suites

Exercice 1

On considère l'algorithme suivant :

Variables: i est un nombre réel Traitement: Pour i allant de 0 à 5Afficher $i \times (i-1)$ Fin de la boucle Pour

- 1. Donner les différentes valeurs affichées par cet algorithme.
- Donner l'expression d'une suite (u_n) dont les six premiers termes sont les valeurs affichées par l'algorithme.

Exercice 2

Déterminer les 5 premiers termes des suites suivantes :

a.
$$u_n = 2 \cdot n^2 - n + 1$$

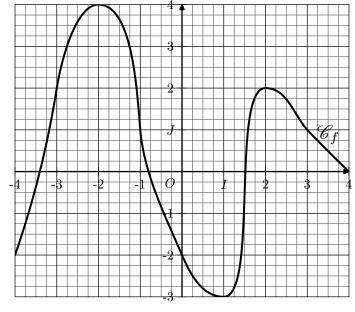
b.
$$v_n = \frac{2 \cdot n + 1}{2 - 3 \cdot n}$$

c.
$$w_n = \sqrt{3n + 25}$$

a.
$$u_n = 2 \cdot n^2 - n + 1$$
 b. $v_n = \frac{2 \cdot n + 1}{2 - 3 \cdot n}$ c. $w_n = \sqrt{3n + 25}$ d. $x_n = 3 \cdot [1 + (-1)^n] + 2$

Exercice 3

Dans le plan muni d'un repère orthonormé (O; I; J), on considère la représentation \mathscr{C}_f d'une fonction f définie sur l'intervalle [-4; 4]:



On considère les suites $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ vérifiant les rela-

 $u_{n+1} = f(u_n)$; $v_{n+1} = f(v_n)$ pour tout $n \in \mathbb{N}$ vérifiant les conditions initiales suivantes :

$$u_0 = -1$$
 ; $v_0 = -4$

Déterminer les 100 premiers termes de chacune de ces deux suites.

Exercice 4

On considère l'algorithme suivant :

Variables: i est un nombre réel

a est un nombre réel

Initialisation: a prend la valeur -1**Traitement :** Pour i allant de 0 à 4

Afficher a

a prend la valeur $a \times 2 - i + 1$

Fin de la boucle Pour

- 1. Donner les différentes valeurs affichées par cet algorithme.
- 2. Donner l'expression d'une suite dont les cinq premiers termes sont les valeurs affichées par l'algorithme.

Exercice 5

1. On considère la suite (u_n) définie par : $\begin{cases} u_0 = 3 & ; \quad u_1 = 1 \\ u_{n+2} = 2 \cdot u_{n+1} + u_n & \text{pour tout } n \in \mathbb{N} \end{cases}$

Donner les cinq premiers termes de la suite (u_n) .

2. On considère la suite (v_n) définie par : $v_0 = -3$; $v_{n+1} = n - 2 \cdot v_n$ pour tout $n \in \mathbb{N}$

Donner les quatre premiers termes de la suite (v_n) .

Exercice 6

On considère la suite $(u_n)_{n\in\mathbb{N}}$ dont le terme de rang n est donné par la formule :

$$u_n = n^2 - 7n + 1$$

1. A l'aide de la calculatrice, compléter le tableau cidessous:

n	0	1	2	3	4	5	6	7	8	9	10
u_n											

2. Après avoir donner le tableau de variation de la fonction f dont l'image de x est défini par :

$$f(x) = x^2 - 7x + 1$$

Etablir que la suite (u_n) est croissante à partir du rang

Exercice 7

Déterminer la monotonie de la suite $(u_n)_{n\in\mathbb{N}}$ définie par la formule explicite suivante :

$$u_n = \frac{n^2 - 1}{\sqrt{n}}$$
 pour tout $n \in \mathbb{N}$.

Exercice 8

Soit $(u_n)_{n\in\mathbb{N}}$ la suite définie par : $u_0=1$; $u_{n+1}=u_n-{u_n}^2-1$ pour tout $n{\in}\mathbb{N}$

1. A l'aide de la calculatrice, compléter le tableau cidessous:

n	0	1	2	3	4
u_n					

2. En étudiant la différence de deux termes consécutifs, montrer que la suite (u_n) est décroissante.

Exercice 9

Dans cet exercice, on mettra en évidence la monotonie des suites par la méthode des quotients.

1. On considère la suite $(u_n)_{n\in\mathbb{N}}$ définie par : $u_n = \frac{3^n}{4}$ pour tout $n\in\mathbb{N}$.

Montrer que (u_n) est strictement croissante.

2. La suite $(v_n)_{n\in\mathbb{N}}$ est définie par : $v_n = \frac{n}{2^{n+1}} \quad \text{pour tout } n \in \mathbb{N}$

Montrer que (v_n) est strictement décroissante à partir du rang 2.

Exercice 10

- 1. Montrer que la suite $(u_n)_{n\in\mathbb{N}}$ définie par : $u_n = \frac{5^n}{n+2} \quad \text{pour tout } n\in\mathbb{N}$ est une suite croissante sur \mathbb{N} .
- 2. Soit $(v_n)_{n\in\mathbb{N}}$ définie par la relation explicite : $v_n=n^3-2n^2-3n$
 - a. Donner l'expression réduite de $v_{n+1}-v_n$.
 - b. En déduire que la suite (v_n) est croissante pour n supérieur à 2.

Exercice 11

On considère la suite (u_n) géométrique de premier terme 5 et de raison $\frac{2}{3}$.

On note S_n la somme des (n+1) premiers termes de la suite (u_n) : $S_n = u_0 + u_1 + \cdots + u_{n-1} + u_n$

- 1. Justifier que la suite (S_n) est croissante.
- 2. Donner l'expression du terme S_n en fonction de n.
- 3. a. A l'aide de la calculatrice, compléter le tableau cidessous en arrondissant les valeurs au millième près :

n	0	1	2	10	20	24
S_n						

b. Quelle conjecture peut-on faire sur la valeur des termes de la suite (S_n) lorsque la valeur de n devient très grand?