EXERCICE 1:

Soit ABC un triangle

- 1) Sur la figure ci-après placer les points D et E tels que $\overrightarrow{AD} = 3\overrightarrow{AC}$ et $\overrightarrow{AE} = \overrightarrow{AB} + \overrightarrow{AC}$
- 2) Placer le point F tel que $\overrightarrow{AF} = 3\overrightarrow{BF}$ en détaillant les calculs nécessaires.

Nous allons démontrer que les points D, E et F sont alignés de deux manières.

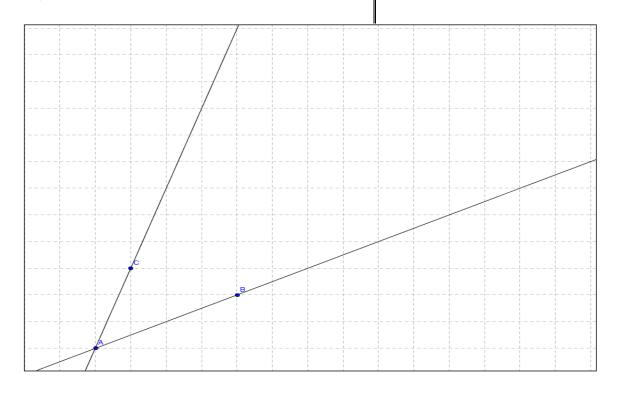
Partie A : A l'aide d'égalités vectorielles

- 3) Exprimer \overrightarrow{DE} en fonction de \overrightarrow{AB} et de \overrightarrow{AC}
- 4) Montrer que $\overrightarrow{DF} = \frac{3}{2} \overrightarrow{AB} 3\overrightarrow{AC}$
- 5) Conclure

Partie B: A l'aide d'un repère

On se place dans le repère $(A; \overrightarrow{AB}; \overrightarrow{AC})$

- 6) Déterminer les coordonnées des points D, E et F dans ce repère
- 7) Conclure.



EXERCICE 2:

Préciser pour chacune des affirmations suivantes si elle est vraie ou fausse. Justifier soigneusement.

- 1) L'inéquation $x^2 + 2x + 3 > 0$ n'admet aucune solution réelle.
- 2) La forme canonique de $-2x^2 + 4x + 6$ est $-2(x-1)^2 4$
- 3) Dans le plan muni d'un repère, si A(-2; 5) et B(3; 4) et (d) d'équation 2x y + 5 = 0 alors les droites (AB) et (d) sont parallèles.
- 4) On considère l'algorithme suivant

Entrée : Saisir x et y

<u>Traitement</u>: m prend la valeur 2x - y

Si m = 5 alors

Sortie: Afficher « le point appartient à (d) »

Traitement: Sinon

Sortie: Afficher « le point n'appartient pas à

(d) »

Cet algorithme vérifie si un point appartient à la droite (d) d'équation 2x - y + 5 = 0

EXERCICE 3:

Un encadreur dispose de 10m de profilé d'aluminium et souhaite l'utiliser pour faire un cadre autour d'un logo formé d'un carré et d'un rectangle comme sur la figure ci-dessous. La largeur du rectangle est égale au côté du carré.

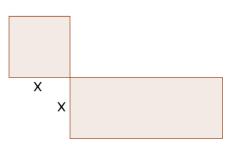
Problème:

Il souhaite que l'aire de ce logo soit la plus grande possible.

1) On note x le côté du carré et A(x) l'aire du logo pour $x \in [0; 10]$

Montrer que $A(x) = -2x^2 + 5x$

- 2) Etudier les variations de la fonction A sur [0; 10]
- 3) Répondre au problème posé.



EXERCICE 4:

Soit la fonction f définie par $f(x) = \frac{2x^2 + 12x + 18}{x^2 + 3}$. On note f's a dérivée

- a) Donner son ensemble de définition D_f. Justifier
- b) Montrer que f' peut s'écrire : $\frac{-12x^2 24x + 36}{(x^2 + 3)^2}$
- c) Etudier le signe de f '(x) puis dresser le tableau de variations de f.
- d) f possède-t-elle des extremums locaux? Argumenter.
- e) Déterminer l'équation réduite de la tangente à la courbe de cette fonction au point d'abscisse 0.

EXERCICE 5:

Une entreprise de fabrication de produit chimique demande au conseil régional de créer une route pour accéder à la nouvelle autoroute dont le tracé est modélisé par la courbe de la fonction racine carrée comme l'indique le graphique ci-dessous, M étant un point quelconque de cette courbe et où l'emplacement de l'entreprise est représentée par le point E (2; 0). Pour en minimiser le coût et sécuriser l'environnement, la région décide que la route doit être la plus courte possible.

Déterminer les coordonnées du point $M(x; \sqrt{x})$ représentant le point de jonction entre la route et l'autoroute qui satisfait à cette décision.

