Méthodes pour l'étude des fonctions

Seconde

Trouver l'image d'un nombre par le calcul

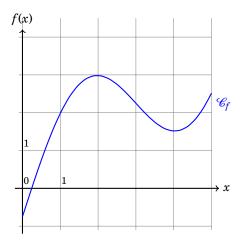
Méthode:

On utilise la formule donnant f(x) en remplaçant x par la valeur de l'énoncé.

Exemple: $f(x) = 2x^2 + 4x + 3$. Calculer l'image de 5.

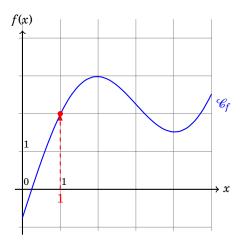
$$f(5) = 2 \times 5^2 + 4 \times 5 + 3 = 2 \times 25 + 20 + 3 = 73$$

Seconde Méthodes pour l'étude des fonctions 2/30

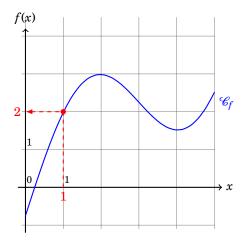

Trouver l'image d'un nombre graphiquement

Méthode:

Supposons qu'on cherche l'image d'un nombre a. On regarde où se trouve le point de la courbe d'abscisse a et on lit ensuite son ordonnée : c'est l'image de a.


Seconde Méthodes pour l'étude des fonctions 3/

Exemple : La courbe ci-dessous représente une fonction f définie sur [0;5]. Déterminer l'image de 1.


Seconde Methodes pour l'étante des fonctions 4/30

Exemple : La courbe ci-dessous représente une fonction f définie sur [0;5]. Déterminer l'image de 1.

Seconde Méthodes pour l'étude des fonctions 5/30

Exemple : La courbe ci-dessous représente une fonction f définie sur [0;5]. Déterminer l'image de 1.

On trouve que l'image de 1 est 2, ce qui s'écrit aussi : f(1) = 2.

Seconde Méthodes pour l'étude des fonctions 6/30

Trouver les antécédents éventuels d'un nombre par le calcul

Méthode:

On utilise la formule donnant f(x) et on résout l'équation pour trouver x.

Exemple : $f(x) = 2x^2 + 3$. Calculer les antécédents éventuels de 5.

$$f(x) = 5$$

$$2x^{2} + 3 = 5$$

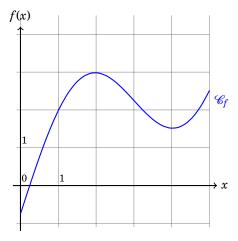
$$2x^{2} = 5 - 3 = 2$$

$$x^{2} = \frac{2}{2}$$

$$x^{2} = 1$$

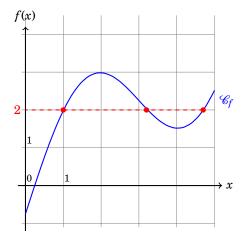
$$x = -1 \text{ ou } x = 1$$

Seconde Méthodes pour l'étude des fonctions 7

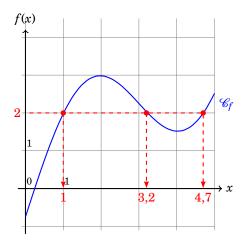

Trouver les antécédents éventuels d'un nombre graphiquement

Méthode:

Supposons qu'on cherche les antécédents d'un nombre b. On regarde où se trouvent (s'ils existent) les point de la courbe d'ordonnée b et on lit ensuite leur abscisse : ce sont les antécédents de b.


Seconde Méthodes pour l'étude des fonctions 8/30

Exemple: La courbe ci-dessous représente une fonction f définie sur [0;5]. Déterminer les antécédents éventuels de 2.


Seconde Méthodes pour l'étude des fonctions 9/30

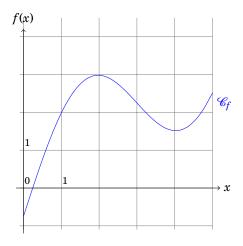
Exemple: La courbe ci-dessous représente une fonction f définie sur [0;5]. Déterminer les antécédents éventuels de 2.

Seconde Méthodes pour l'étude des fonctions 10/30

Exemple : La courbe ci-dessous représente une fonction f définie sur [0;5]. Déterminer les antécédents éventuels de 2.

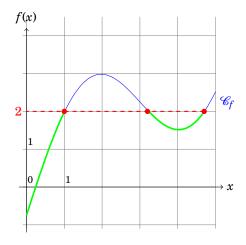
Les antécédents de 2 sont : 1; 3,2; 4,7.

Résoudre une inéquation graphiquement

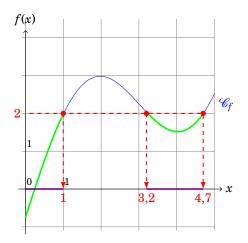

Méthode:

On veut résoudre l'inéquation $f(x) \le b$. On colorie les point de la courbe d'ordonnée $\le b$ (donc situés **au-dessous** de la droite d'équation y = b), puis leur abscisse : ce sont les solutions.

De même, pour résoudre $f(x) \ge b$, on colorie les points situés **au-dessus** de la droite d'équation y = b.

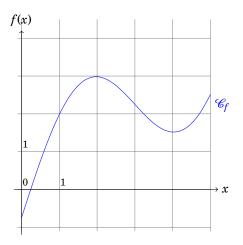

Seconde Méthodes pour l'étude des fonctions 12/30

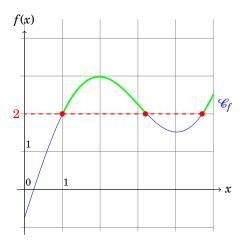
Exemple 1: La courbe ci-dessous représente une fonction f définie sur [0;5]. Résoudre graphiquement $f(x) \le 2$.


Seconde Methodes pour l'étude des fonctions 13/30

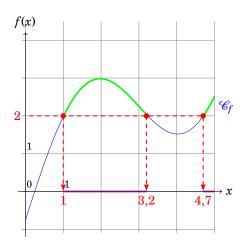
Exemple 1: La courbe ci-dessous représente une fonction f définie sur [0;5]. Résoudre graphiquement $f(x) \le 2$.

Seconde Methodes pour l'etude des fonctions 14/30


Exemple 1: La courbe ci-dessous représente une fonction f définie sur [0;5]. Résoudre graphiquement $f(x) \le 2$.


L'ensemble solution est $\mathcal{S} = [0;1] \cup [3,2;4,7]$.

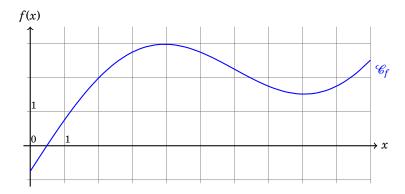
Seconde Méthodes pour l'étude des fonctions 15/30


Exemple 2 : Résoudre graphiquement $f(x) \ge 2$.

Exemple 2 : Résoudre graphiquement $f(x) \ge 2$.

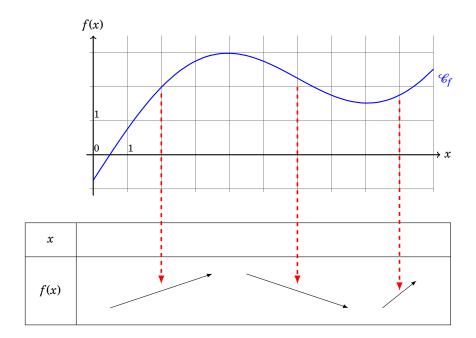
Exemple 2: Résoudre graphiquement $f(x) \ge 2$.

L'ensemble solution est $\mathcal{S} = [1;3,2] \cup [4,7;5]$.

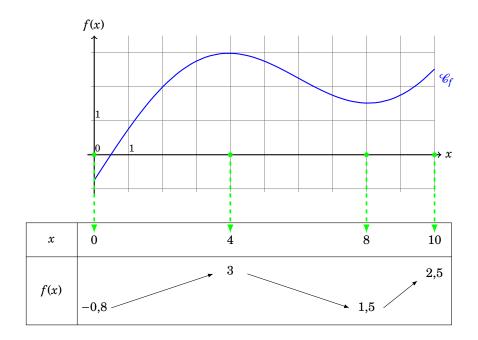

Établir le tableau de variation d'une fonction

Méthode:

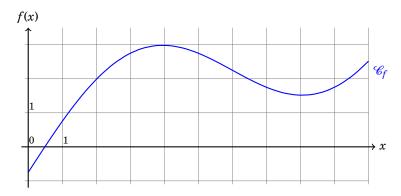
- 1) Dans le tableau, les flèches suivent le comportement de la courbe. On place donc une flèche qui monte quand la courbe monte, une flèche qui descend quand la courbe descend.
- 2) On place les valeurs remarquables de f(x) au bout des flèches et les valeurs correspondante de x dans la première ligne.

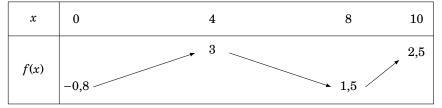

Exemple:

Seconde Méthodes pour l'étude des fonctions 19/30



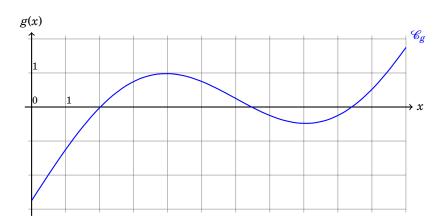
x	
f(x)	


Seconde



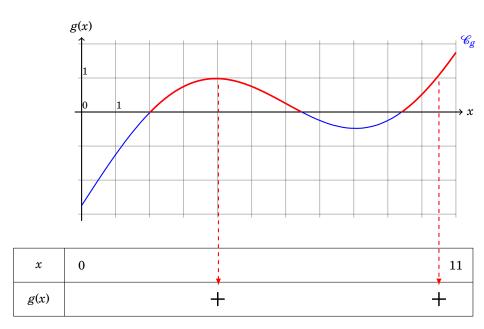
Résultat :

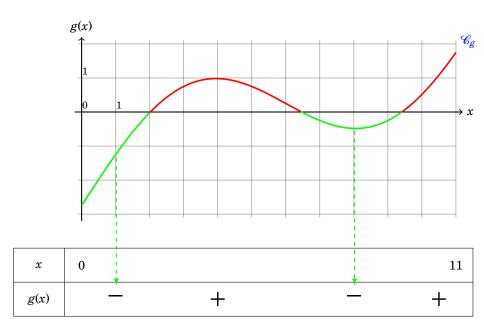
Seconde McChestes pour l'etude des fonctions 24/30

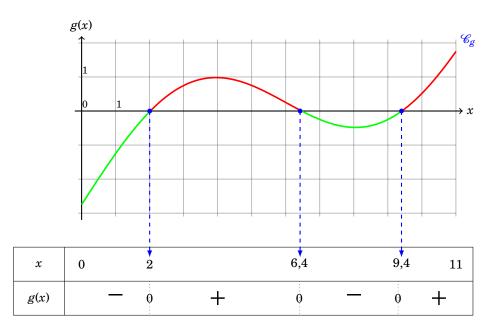

Établir le tableau de signe d'une fonction

Méthode:

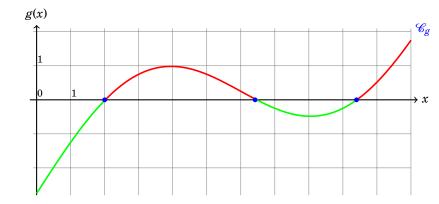
- 1) Dans le tableau, on place un + quand la courbe est au-dessus de l'axe des abscisses, et un quand la courbe est au-dessous de l'axe des abscisses.
- 2) On place les valeurs remarquables de x dans la première ligne.


Exemple:


Seconde Méthodes pour l'étude des fonctions 25/30



x	0 11	
g(x)		


Seconde Methodes pour l'etude des fouctions 26/30

Résultat :

x	0	2		6,4	9,4	11
g(x)		— о	+	0	_ 0	+

Seconde Methodis: pour l'étude des fonctions 30/30