FICHE MÉTHODE CALCULATRICE Casio : Dérivée

Nous allons voir comment :

- Déterminer le nombre dérivé
- Tracer la dérivée d'une fonction
- Tracer la tangente à une fonction en un point donné

> Détermination du nombre dérivé :

• Exemple : On cherche à déterminer le nombre dérivé, en x=3, de la fonction $f: x \mapsto x^2 - 2$

• Aller dans le menu 1 « RUN ₁ » et cliquer sur « EXE » :		EMAT	
• Aller dans \rightarrow CALC	LUIST (MAT) (1918) (ALC) STATI (>	Solve JAIX Stars Jax	4
• Aller ensuite sur d/dz, l'écran ci-contre s'affiche alors :			
• Taper ensuite l'expression de y, suivi du nombre x pour lequel l'on veut obtenir le nombre dérivé ; comme suit :	d/dx(X2-2,3)	d/dz(X2-2,3) Solue 8/4/2 8/4/2 0/dx	6

\Rightarrow Le nombre dérivé en x=3 de la fonction $f: x \mapsto x^2 - 2$, est 6

➤ Tracer la dérivée d'une fonction :

• Exemple : On cherche à tracer la représentation graphique de la fonction dérivée f d'une fonction f. On choisit la fonction : $f : x \mapsto x^2 - 2$

• Aller dans le menu 5 « GRAPH ₅ » et cliquer sur « EXE » :		Graph Func :Y= Y2: [] Y3: [-] Y4: [-] Y5: [-] Y6: [-] SEL DEL IV2: NIV 7000 [0800
• Entrer l'équation : $y = x^2 - 2$, puis aller dan	ns Y2, puis dans $\bigcirc \rightarrow$	Graph Func :Y= V18X2-2 [] V28d/dz(V1) []
$CALC \to d/dZ$		
Taper ensuite Y 1 () EXE .		Ý5: Č—Í Y6: Č—Í
On obtient alors ceci :		SEL DEL TWRE STUD MILLS

> Tracer la tangente à une fonction en un point donné

• Exemple : On cherche à tracer la tangente à une fonction f en x=3. On choisit la fonction : $f: x \mapsto x^2 - 2$

Les calculatrices CASIO ne peuvent (malheureusement) pas afficher l'équation de cette tangente...

• On peut afficher le tableau de valeurs de ces fonctions :

Il peut être intéressant de comparer le coefficient directeur de la tangente avec le nombre dérivé donné par la fonction f' pour x=3. Pour cela, on affiche la table des valeurs.

• Aller dans le menu 7 « TABLE 7 » et cliquer sur « EXE » :		Table Func Y= V1=200+3 Implementation V2: [m] V3: [m] V4: [m] V5: [m] V6: [m] [SEL IOSE [MES SIMP SET TRAL
• Aller dans SEL pour sélectionner la fonction Y1 et Y2 dont on veut voir la table. Le égal (=) se met alors en surbrillance.		Table Func :Y= Y18X2-2 [] Y28d/dx(Y1) [] Ws [] Y4: [] Y5: [] Y6: [] [SEL DEF W29 STWP SET [TABL
• Puis aller dans EET pour définir les paramètres de la table. Ici par exemple, on veut une table allant de 0 à 4, avec un pas de 1.		Table Settin s X Start:0 End :4 Step :1
• Appuyer sur EXIT , puis aller dans TABL pour voir s'afficher le tableau de valeur.		8 YI Y2 1 -1 2 2 2 4 3 7 6 4 14 8 4 FORM 025 2000 FORM 025 2000 FOIL (5-CON)

\Rightarrow Le nombre dérivé 6 au point d'abscisse 3 correspond bien à la pente de la tangente en ce point